Nonconvex Matrix Factorization from Rank-One Measurements
نویسندگان
چکیده
We consider the problem of recovering low-rank matrices from random rank-one measurements, which spans numerous applications including covariance sketching, phase retrieval, quantum state tomography, and learning shallow polynomial neural networks, among others. Our approach is to directly estimate the low-rank factor by minimizing a nonconvex quadratic loss function via vanilla gradient descent, following a tailored spectral initialization. When the true rank is small, this algorithm is guaranteed to converge to the ground truth (up to global ambiguity) with near-optimal sample complexity and computational complexity. To the best of our knowledge, this is the first guarantee that achieves near-optimality in both metrics. In particular, the key enabler of near-optimal computational guarantees is an implicit regularization phenomenon: without explicit regularization, both spectral initialization and the gradient descent iterates automatically stay within a region incoherent with the measurement vectors. This feature allows one to employ much more aggressive step sizes compared with the ones suggested in prior literature, without the need of sample splitting.
منابع مشابه
Nonconvex Low Rank Matrix Factorization via Inexact First Order Oracle
We study the low rank matrix factorization problem via nonconvex optimization. Compared with the convex relaxation approach, nonconvex optimization exhibits superior empirical performance for large scale low rank matrix estimation. However, the understanding of its theoretical guarantees is limited. To bridge this gap, we exploit the notion of inexact first order oracle, which naturally appears...
متن کاملA regularized matrix factorization approach to induce structured sparse-low-rank solutions in the EEG inverse problem
We consider the estimation of the Brain Electrical Sources (BES) matrix from noisy electroencephalographic (EEG) measurements, commonly named as the EEG inverse problem. We propose a new method to induce neurophysiological meaningful solutions, which takes into account the smoothness, structured sparsity, and low rank of the BES matrix. The method is based on the factorization of the BES matrix...
متن کاملApproximate low-rank factorization with structured factors
An approximate rank revealing factorization problem with structure constraints on the normalized factors is considered. Examples of structure, motivated by an application in microarray data analysis, are sparsity, nonnegativity, periodicity, and smoothness. In general, the approximate rank revealing factorization problem is nonconvex. An alternating projections algorithm is developed, which is ...
متن کاملExpectile Matrix Factorization for Skewed Data Analysis
Matrix factorization is a popular approach to solving matrix estimation problems based on partial observations. Existing matrix factorization is based on least squares and aims to yield a low-rank matrix to interpret the conditional sample means given the observations. However, in many real applications with skewed and extreme data, least squares cannot explain their central tendency or tail di...
متن کاملPhaseLift is robust to a constant fraction of arbitrary errors
Consider the task of recovering an unknown n-vector from phaseless linear measurements. This nonconvex problem may be convexified into a semidefinite rank-one matrix recovery problem, known as PhaseLift. Under a linear number of Gaussian measurements, PhaseLift recovers the unknown vector exactly with high probability. Under noisy measurements, the solution to a variant of PhaseLift has error p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1802.06286 شماره
صفحات -
تاریخ انتشار 2018